Question	Answer	Marks
1(a)(i)	red and (the Cu ²⁺ ion/copper ions) is gaining electrons/is decreasing in oxidation number;	1
1(a)(ii)	formation of $Cu^{2+}/copper$ ions at the anode happens at the same rate as; removal of $Cu^{2+}/copper$ ions at the cathode ora;	2 1 1
1(b)	replace (anode of) copper with nickel; replace electrolyte with nickel(II) sulfate/NiSO ₄ ;	2 1 1
1(C)	(good) catalysts; variable oxidation numbers; form coloured compounds/coloured ions;	3 1 1 1

Question	Answer	Marks	Guidance
2(a)(i)	$Al^{3^{+}} + 3e \rightarrow Al$ formula of $Al^{3^{+}}$ ion; rest correct;	2	multiples I state symbols A – 3e on right

Question	Answer	Marks	Guidance
2(a)(ii)	$^{2} \rightarrow O_{2} + 4e$ species; balancing;	2	multiples I state symbols A – 4e on left
2(a)(iii)	end AND (electrical) energy supplied;	1	A energy required to break bonds
2b)(i)	exot AND (electrical) energy release;	1	heat energy
2(b)(ii)	magnesium forms ions (in solution) OR magnesium loses electrons OR magnesium is oxidised;		A magnesium dissolves/goes into solution A equation (balanced or unbalanced)
	copper is deposited (on the electrode) OR copper ions become copper atoms OR copper ions gain electrons OR copper ions are reduced;	2	A equation (balanced or unbalanced) I use of terms anode or cathode
2(b)(iii)	 M1 set up a magnesium/manganese cell; M2 the negative electrode (is the more reactive) OR the electrode that loses mass (is more reactive); 		A replace Cu with Mn A converse
	OR M1 replace magnesium with manganese; M2 if voltage less (positive) manganese is less reactive OR if voltage is more (positive) manganese is more reactive;	2	
2(c)	$_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O$ species; balancing;	2	A multiples I state symbols
2(d)(i)	(light from the) sun/sunlight;	1	A uv
2(d)(ii)	carbon dioxide + water → glucose + oxygen;	1	starch/sugar/(named)carbohydrate I energy or light on LHS

3	(a	M1	brass	[1]
		M2	copper COND on M1	[1]
	(b)	(i)	$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$ species (1) balancing (1)	[2]
		(ii)	Manufacture of sulfuric acid or bleach or making wood pulp or making paper or food or fruit juice or wine preservative	
			or fumigant or sterilising	[1]
	(c)	(i)	sulfuric acid	[1]
3	(c	(ii)	$Zn^{2+} + 2e \rightarrow Zn$	[1]
			oxygen or water Allow O_2 and H_2O if no name seen	[1]
			sulfuric acid Allow: H ₂ SO ₄ if no name seen	[1]
3	(d)	(i)	from zinc to carbon (clockwise direction on or near the wire)	[1]
		(ii)	to allow <u>ions</u> to flow	[1]
		(iii)	oxidation and loss of electron(s) or increase in oxidation number/state	[1]
			reduction and decrease in oxidation number/state or gain of electron(s)	[1]
				[Total: 13]

4	(a carbon dioxide/CO ₂		[1]
	(b) $2H_2$ + $O_2 \rightarrow 2H_2O$		[1
	(c) anode/negative e move from this e	electrode and electrons lost(by hydrogen/H/H ₂)/electrons lectrode	[1]
	(ii) $H_2 \rightarrow 2H^+ + 2e_2^+$ $2H_2O + 2e() / Species (1) Balancesical Sp$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	[2]
	(d) Any two from: CELL: SUSTAINABILITY: POLLUTION:	lightweight quieter fewer working parts/less maintenance more efficient or less energy wasted or more energy produced conserves a limited resource/petroleum/fossil fuels unlimited supplies of renewable resource(of hydrogen from water) <u>No or less</u> greenhouse effect <u>No or less</u> acid rain	
	POLLUTANTS:	<u>No or less</u> toxic gases <u>No or less</u> smog <u>No or less</u> C/soot <u>No or less</u> CO ₂ <u>No or less</u> CO <u>No or less</u> SO ₂ <u>No or less</u> oxides of nitrogen/NO/NO ₂ /N ₂ O ₄ /NO _x <u>No or less</u> (unburnt) hydrocarbons <u>No or less low level</u> ozone H ₂ O is the only product	

[Total: 7]

5	(a	(i)	incomplete combustion or limited oxygen/less oxygen/not enough oxygen (1)	[1]
		(ii)	any two from:	
			(forward) reaction is endothermic (1)	
			high temperature increases yield/favours forward reaction/shifts equilibrium to right (1)	
			faster reaction (rate) (1)	[2]
		(iii)	any two from:	
			high pressure reduces yield or favours LHS (1)	
			because LHS has smaller volume or number of moles/number of molecules (of gas) ORA (1)	
			(high pressure plant is) expensive/dangerous/explosion/leaks	[2]
5	(b	hyc	rogen and chlorine / H ₂ and C l_2 (1)	
		soc	lium hydroxide / NaOH / Na⁺OH (1)	
		2H	$+2e \rightarrow H_2/2H^* \rightarrow H_2 - 2e$ (1)	
		2C	$l \rightarrow Cl_2 + 2e/2Cl - 2e \rightarrow Cl_2$ (1)	
		Hyd	drogen/H ₂ /H/H ⁺ at cathode and chlorine/chloride/C l_2 /C l /C l at anode (1)	[5]
5	(c	<u>ea</u>	<u>ch</u> chlorine 1 bond pair and 3 non-bond pair (1)	
		оху	gen atom 2 non-bond pairs and 2 bond pairs as double bond (1)	
		car	bon atom 4 bond pairs including 2 bond pairs as double bond (1)	[3]
				[Total: 13]

- 6 **(a** bauxite (1)
 - (b) electrolyte alumina/aluminium oxide dissolved in molten cryolite (1) use cryolite to reduce mp/comparable idea/temperature of electrolyte 900 to $1000^{\circ}C(1)$ electrodes carbon (1) aluminium formed at cathode/ $Al^{3+} + 3e \rightarrow Al(1)$ oxygen formed at anode/ $2O^{2} \rightarrow O_{2} + 4e(1)$ anode burns/reacts to carbon dioxide/ $C + O_{2} \rightarrow CO_{2}(1)$ [6]
 - (c) food containers/window frames/cooking foil/cars/bikes/drink cans (1) [1]

(ii)
$$4OH \rightarrow O_2 + 2H_2O + 4e$$
 (2) [2]

$$4Al + 3O_2 \rightarrow 2Al_2O_3 (2)$$
^[2]

[Total: 12]